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The buoyancy-driven motion of a train of viscous drops settling or rising along the 
axis of a vertical cylindrical tube is investigated. Under the assumption of creeping 
flow, the evolution of the drops is computed numerically using a boundary integral 
method that employs the axisymmetric periodic Green’s function for flow in a 
cylindrical tube. Given the drop volume and assuming that the viscosity of the drops 
is equal to that of the suspending fluid, the motion is studied as a function of the 
radius of the tube, the separation between the drops, and the Bond number. Two 
classes of drops are considered : compact drops whose effective radius is smaller than 
the radius of the tube, and elongated drops whose effective radius is larger than the 
radius of the tube. It is found that compact drops may have a variety of steady 
shapes including prolate and oblate, dimpled tops, and shapes containing pockets of 
entrained ambient fluid. When the surface tension is sufficiently small, compact 
drops become unstable, evolving to prolate rings with elongated tails. The terminal 
velocity of compact drops is discussed and compared with that predicted by previous 
asymptotic analyses for spherical drops. Steady elongated drops assume the shape of 
long axisymmetric fingers consisting of a nearly cylindrical main body and two 
curved ends. Relationships between the terminal velocity of elongated drops, the gap 
between the drops and the wall of the tube, and the Bond number are established. 
The results are discussed with reference to previous analyses and laboratory 
measurements for inviscid bubbles. 

1. Introduction 
Viscous drops and nearly inviscid bubbles are encountered in a broad range of 

natural phenomena, biological functions, and engineering applications. Charac- 
teristic examples include atmospheric precipitation, underground transport of 
globular pollutants, dispersion, two-phase flow and heterogeneous mixing in chemical 
and petroleum engineering processes, and the flow of particulate fluids within 
conduits and through porous media. The investigation of the mechanics of drops and 
bubbles has a long record in fluid dynamics, and continues to be a substantial portion 
of pure and applied research. General reviews on the subject are given by Clift, Grace 
& Weber (1978) and Rallison (1984). 

In  one type of classification, previous work may be cast into two categories, one 
considering motion in a virtually infinite suspending fluid, and the other in a domain 
of flow which is bounded by a solid boundary or a fluid interface. One of the better 
studied problems in the second category concerns the motion of a drop in a 
cylindrical tube (Clift et al. 1978, chapter 9). Historically, this problem was first 
addressed in connection with the air-bubble Cochius viscometer (Faust 1919 ; 
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Abrams, Kavanagh & Osmond 1921). Further research was motivated by various 
applications in industrial and biological systems involving two-phase flow, but also 
by the abstraction of a cylindrical tube into a modular element of a porous medium 
or branching network. From an analytical perspective, the geometrical simplicity of 
the cylindrical tube offers opportunities for accurate analytical and numerical 
investigations. 

Considering, in particular, the behaviour of a drop which is rising or settling due 
to buoyancy in a vertical cylindrical tube at low Reynolds numbers, we find that the 
motion will depend primarily on the relative magnitude of the radius of the tube, uc, 
and the equivalent radius of the drop, a. If u, is considerably larger than a, the drop 
will move as if i t  were immersed in an unbounded suspending fluid. Provided that the 
drop remains nearly spherical, the flow will be described by the solution of 
Hadamard and Rybzinsky (see Batchelor 1967). Thc stability of this motion was 
investigated by Kojima, Hinch & Acrivos (1984) and Pozrikidis (1990). Physical 
considerations indicate that as the radius of the tube is decreased, the speed of the 
drop will be reduced. The effect of decreasing the radius of the tube on the shape and 
stability of motion of the drop cannot be assessed without carrying out a detailed 
investigation. 

Laboratory observations dating back to  the work of Barr (1926) have shown that 
the behaviour of a drop when uc is less than a is not universal, but depends on the 
value of the tube Bond number B = IAplguE/y, where Ap is the density difference 
between the drop and the suspending fluid, g is the acceleration due to gravity, and 
y is the surface tension. Bretherton (1961) showed that when B < 0.842, the drop will 
not be able to move, but instead it will push against the wall of the tube forming an 
upper and a lower static meniscus and halting the fluid flow. At higher values of B, 
the drop will be able to  accommodate itself within the tube, attaining a composite 
elongated shape that consists of a nearly cylindrical body and two curved ends 
(Goldsmith & Mason 1962, 1963; O’Brien 1969; Coutanceau & Thizon 1981). 
Laboratory measurements have shown that the terminal velocity of an elongated 
drop is nearly independent of its length, as long as this is larger than roughly twice 
the radius of the cylinder. 

Several researchers have carried out theoretical investigations of the low- 
Reynolds-number buoyancy-driven motion of a drop in a vertical tube. Bretherton 
(1961) devised an approximate theory for tightly fitting inviscid bubbles. In  his 
analysis, he used the lubrication approximation to  describe the flow in the narrow 
gap between the bubble and the tube, and hydrostatics to describe the top and 
bottom of the bubble. Finally, he matched the bubble profiles in the two regions 
using asymptotic methods. His computations produced the critical value B = 0.842 
mentioned above. Haberman & Sayre (1958) and Hetsroni, Haber & Wacholder 
(1970) considered the motion of a single small spherical drop using approximate 
methods. Goldsmith & Mason (1962, 1963) developed a theory to  describe the 
virtually unidirectional flow along the main body of an elongated drop, and derived 
an equation relating the terminal velocity of the drop to the gap between the drop 
and the tube. Hyman & Skalak (1972) performed accurate numerical computations 
of the flow due to a train of spherical drops, considering the motion as a function of 
the tube radius, drop separation, and ratio between the viscosities of the drop and 
the suspending fluid. Coutanceau & Thizon (1981) repeated the computations of 
Hyman & Skalak for the case of solitary drops. More recently, Reinelt (1987) and 
Mao & Dukler (1990) performed computational studies of the motion of elongated 
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inviscid drops using finite-difference methods for vanishing and finite Reynolds 
numbers, respectively. 

The objective of this work is to present a numerical study of the creeping, 
buoyancy-driven motion of a periodic train of viscous drops within a cylindrical tube 
accounting for the drop deformation. Our computations are aimed to bridge the gap 
between previous asymptotic analyses, and to extend previous numerical results in 
three directions. First, we consider periodic trains of drops, and this allows us to 
examine the combined effect of the presence of the tube and the interactions between 
multiple drops. Trains of drops arise often in engineering and biomedical applications, 
e.g. flow of blood cells in the capillaries, and their study is of practical concern. 
Second, we include the effect of drop deformations ; by varying the surface tension, 
we consider drop shapes ranging from nearly spherical to nearly cylindrical. Third, 
we consider transient motions in which a train of drops is introduced within the tube, 
and is allowed to evolve until it  reaches either a steady or an asymptotic state. Thus, 
our results yield information not only on the nature of steady drop shapes but also 
on the stability of the motion. We shall see that in the absence of surface tension 
steady drop shapes are not always feasible, and studies of transient motions are 
necessary in order to establish the behaviour a t  large times. 

Considering a periodic train of drops introduces a new lengthscale which is the 
separation, L,  between two successive drops. When L is infinite, the drops are 
solitary; in this case, as vc becomes much larger than a, the drops behave as if they 
were immersed in an ambient fluid of infinite extent and their terminal velocity tends 
to a finite value which is equal or nearly equal to that given by the solution of 
Hadamard & Rybzinsky (see Batchelor 1967). When L is finite, however, as uc is 
increased, the drops move with an increasingly higher velocity, and in the limit as uc 
becomes infinite, they move at  an infinite rate. This behaviour may be explained by 
noting that far away from a drop, the velocity field due to the drop resembles that 
due to a point force, and recalling that the velocity field due to an infinite array of 
point forces is unbounded. This singular behaviour emphasizes the importance of the 
flow boundaries on the motion of one-dimensional arrays of drops, and calls for an 
investigation of the combined effects of the drop separation, L,  and tjibe radius, uc. 

In our formulation, apart from the assumption of Stokes flow which was critically 
discussed by Bretherton (1961), we introduce two additional assumptions. First, we 
assume that the motion is axisymmetric, i.e. the drops move precisely along the axis 
of the vertical tube; the physical relevance of this assumption has been established 
by previous laboratory observations. Second, we assume that the ratio between the 
viscosities of the drop and the suspending fluid, A, is equal to one. This assumption 
has no physical origin, and is motivated purely by a crucial simplification in our 
numerical procedure as will be discussed in $2. 

At first glance, the choice A = 1 might appear quite too specific. Previous work, 
however, has shown that the dynamics of drops with A = 1 is quite similar to that 
of drops with moderate or small values of A, roughly less than 5 (Rallison & Acrivos 
1978; Pozrikidis 1990; Kennedy 1991). Furthermore, as will be discussed in $4, the 
behaviour of tightly fitting drops may be shown to be independent of the value of A. 
The benefits gained by adopting the choice A = 1 were recognized and exploited in 
several previous computational studies of problems involving convoluted interfaces 
between viscous fluids (Rallison 1981 ; Lister 1989). 

Our studies rely on numerical solutions that are based on the boundary integral 
method for Stokes flow (Pozrikidis 1991). Our implementation contains as a key 
feature the use of the periodic axisymmetric Green’s function that vanishes over the 
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cylindrical wall of the tube. Physically, this Green’s function expresses the flow 
produced by a periodic array of rings of point forces that are coaxial with the tube. 
The assumption h = 1 allows us to express the velocity field simply as a contour 
integral over the trace of one drop in an azimuthal plane involving the discontinuity 
in the surface force across the interface, and to formulate the problem in the context 
of a contour dynamics method for the boundary of one drop. In  $2 we shall outline 
the mathematical formulation and numerical procedure, and in $3  we shall discuss 
the derivation and computation of the Green’s function. In $4 we shall present and 
discuss the results of our computations. 

Before proceeding with our analysis, it is useful to return to the broader framework 
of our problem and to indicate certain complementary aspects. First, we remark that 
the problem of the buoyancy-driven motion of a drop in a tube under conditions of 
inviscid flow has been addressed in numerous laboratory and theoretical studies (see 
Mao & Dukler 1990 and references cited therein). The complementary problem of 
motion due to  an imposed pressure gradient has been studied on a number of 
occasions, and recent examples are the finite element computations of Westborg & 
Hassager (1989) and the boundary integral solutions of Martinez & Udell(1990). The 
motion of a spherical drop in the presence of surfactants was considered by He, 
Dagan & Maldarelli (1991). 

2. Mathematical formulation and numerical procedure 
We consider the gravitational settling of a periodic train of drops of separation L 

inside a cylindrical tube of radius re, as shown in figure 1 .  We assume that the drops 
are moving along the axis of the tube, so the flow is axisymmetric a t  all times and 
the net flow rate through a cross-section of the tube is equal to zero. The Reynolds 
number of the flow inside and outside the drops is assumed to  be negligibly small so 
that the flow is presumed to be in a state of creeping motion. Our objective in this 
section is to derive an integro-differential equation describing the evolution of the 
boundary of a drop. 

First, it  will be necessary to introduce the axisymmetric Green’s function of Stokes 
flow, Mrp, where superscript T P  stands for tube-periodic. Physically, 

represents the velocity a t  the point x = (2, a) produced by an array of rings of point 
forces of total strength g = (gz, 9,) placed concentrically within the tube and pointing 
in the axial or radial direction respectively, where one of the rings is located a t  the 
point x, = (xo, ao) ; Greek indices stand for x or (T. The derivation and computation 
of Wp will be discussed in detail in $3. The net flow rate of (2.1) across any section 
of the tube is equal to zero. 

Following the classical procedure of Rallison & Acrivos (1978), we consider one 
period of the flow, and write two boundary integral equations for the flow inside and 
outside a drop using Wp as the Green’s function. Combining these equations, we 
represent the velocity field in terms of a single-layer potential whose density is 
proportional to the difference in the surface force across the boundary of a drop, AA 
and a double-layer integral involving the velocity a t  the surface of a drop (Pozrikidis 
1991, chapter 5 ) .  Exploiting the fact that the Green’s function is periodic in the x- 
direction and vanishes over the tube and that the flow rate is equal to  zero, and 
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FIQURE 1. Schematic illustration of a train of drops of equivalent radius a separated by a dist- 
ance L settling under the action of gravity along the centre of a cylindrical tube of radius uc. 

assuming that the viscosity of the drop, ,!A, is identical to that of the ambient fluid, 
we express the velocity field in terms of a single-layer potential that takes the form 

where C is the trace of the contour of a drop in an azimuthal plane (figure 1). In the 
case of constant surface tension y ,  A f  = ( - A p g . x +  y2k) n,  where Ap is the density 
difference between the drop and the suspending fluid, k is the mean curvature of the 
boundary of the drop, and n is the unit normal vector pointing outside the drop. 

To compute the evolution of a drop, we represent the trace of the drop in the 
9 = 0 azimuthal plane using a set of marker points, calculate the velocity a t  the 
marker points using the integral representation (2 .2 ) ,  and advance the position of the 
marker points using the second-order Runge-Kutta method. Details of the numerical 
implementation are given by Pozrikidis (1990). 

Our problem involves two physical constants: the surface tension, y ,  and the 
density difference, A p ;  and three lengthscales: the radius of the cylinder, rc, the 
equivalent spherical radius of the drop, a = (3V/4x)f where V is the volume of a drop, 
and the separation between two successive drops, L. In our computations, we non- 
dimerisionalize all variables using as a characteristic length a, velocity a2Apg/p,  and 
stress aApg. Thus, we consider the motion a5 a function of the geometric rat.ios 
Lla, g,/a and the inverse Bond number r= y/a2Apg.  

All calculations described in $4 were performed on a SUN-4/60 Sparc Station. A 
complete transient computation beginning with a spherical initial shape required 
between 5 and 10 hours of CPU time. Continuation with respect to all parameters 
was used in order to reduce the time necessary to arrive at a steady shape. In all 
cases, the change in the volume of a drop, an index of the accuracy of the 
calculations, was less than 0.5 ?" through the completion of a computation. 
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t'o(w) ] -A,, sin (53) dt, 

MZX = uo s," [ t'l'"' 1 .  A ,  sin ( G t )  dt, 
W I O b J )  

3. Computation of the Green's function 
I n  this section we discuss the derivation and computation of the periodic 

axisymmetric Green's function MTp associated with an infinite array of rings of 
point forces separated by a distance C, placed coaxially within a cylindrical tube of 
radius u,. 

We build the Green's function Wp in two steps. First, we introduce the 
axisymmetric Green's function W expressing the flow due to a ring of point forces 
coaxially placed within a cylindrical tube (Tozeren 1984). By definition, W is 
required to vanish when u = u,. It will be convenient to decompose W into the 
free-space component, MR, and a complementary component, Mc, writing 
W = MR+MC. The free-space component MR expresses the flow due to a ring of 
point forces in an infinite fluid and is given by 

) 
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where ~,,,K,,I,,K, are the modified Bessel functions of zero and first order. All of 
these functions may be computed efficiently and accurately using polynomial 
approximations (Abramowitz & Stegun 1970). Equation (3.2) may be written in the 
symbolic form 

] dt, 
MC = g o  J: [ F,, sin (it - F ,  cos (at ) 

F,, cos (at)  $’,,sin ( i t )  
(3.5) 

where F is a function of w,wo,w, ,  t .  It may be shown that as t tends to zero, all 
components of F tend to zero except for the xx-component, F,, = 8 In t + . , . . Because 
this is a logarithmic singularity, the corresponding integral in (3.5) is integrable at 
the origin. On the other hand, as t tends to  infinity, and as long as a < aC, a, < uc, 
F decays at the exponential rate exp [(a + a, - 2a,)t] which guarantees the existence 
of all integrals in (3.5). 

Now, for the purposes of accurate computation, it is imperative to regularize the 
xx-component of Mc. Thus, noting that 

7c 1 
K,(2w,-w-w,)~0~(it)dt =-  

2 [a2+(2ac-a--a,)2]t 

(Happel & Brenner 1973, p. 303), we write 

M2x = a o ~ o m F ~ x c o s ( i t ) d t -  4n a, 
[P + (2a, - a - a,)2]4’ 

(3.7) 

where F!,., F,,+8Ko (~w,--w-w,). 

As t tends to  zero, K,(2wc-w-w,) behaves like -ln(2wc-o-w,), and the modified 
integrand Fk. tends to  a finite value. On the other hand, as t tends to  infinity, Fa, 
decays exponentially a t  the same rate as F,,, In  retrospect, the argument of the 
Bessel function in (3.6) was designed so that as t tends to infinity, FL. and Fxx decay 
at identical rates. 

Next, we consider the Green’s function WA expressing the flow due to  an array 
of 2iV+ 1 rings of point forces of separation L ,  placed coaxially within the tube, where 
the superscript A stands for array. As for the case of a single ring, we decompose 
W A  = MRA + MCA where MRA represents flow due to an array of rings of point 
forces in an infinite fluid, and MCA is the complementary component. Summing (3.7) 
we obtain 

(3.8) 

The sum within the integral in (3.8) may be expressed in closed form using the 
identity 

cos (NLt ) - cos [ (N+  1 ) Lt ] 
1 - cos (Lt ) 

N 

H(N)  = x exp[i(a + nL)t)] = exp(i2.t) . (3.9) 
n--N 

Considering an infinite array of rings, we pass to the limit as N tends to  infinity, and 
obtain 

27c 
L 

H(m) = -exp(i$t) 
m--m 

(3.10) 
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where S is the one-dimensional delta function (Lighthill 1958, p. 67). Substituting 
(3.10) into (3.8) and adding the flow due to the primary rings we obtain we obtain 
the periodic Green's function 

1 oc 

I"k,(t = O ) +  c Fk,(t,) cos ( t m i )  
m=l 

where t, = 2nm/L and the superscript TP  stands for tube-periodic. The first sum in 
(3.11) is convergent, for the individual terms decay at  an exponential rate. To 
demonstrate that the second sum is also convergent, we expand M:, in an asymptotic 
series for large values of nL, obtaining 

The form of this expansion indicates that the individual terms in the second sum of 
(3.11) decay like (nL)-', and therefore, this sum is convergent. In practice, in order 
to computefq:, we truncate the first infinite sum in (3.11) at a value of m such that 
2wc - w - wo = 25, and the second sum at the value n = 40. 

Repeating the above steps, and noting that F,Jt = 0 ) ,  we obtain 

(3.13) 
m-1 n--m 

as well as two similar expressions for e: and -TF. 

4. Results and discussion 
It will be convenient to classify our drops into two categories according to the 

value of the ratio ac/a.  When uc/a  > 1 we have compact drops, otherwise we have 
elongated drops. In the limit of large surface tension, compact drops assume a 
spherical shape, elongated drops tend to adhere to the wall. 

4.1. Compact drops 
First, we illustrate the effect of drop separation, L / a ,  on the shape of steadily settling 
drops, fixing the values of c c / a  and r. Thus, in figure 2(a-c) we present profiles of 
steadily settling drops for crJa = 2, r= 0.10, and L / a  = 6,3,2.2.  In all cases, the 
drops have a slightly prolate shape with a dimpled top. The shape for L/a  = 6 
remains virtually unchanged as L / a  is increased beyond this value. As L / a  is 
decreased below 6 one drop starts to feel the presence of its neighbours and obtains 
an increasingly more elongated shape. In addition, the dimple at the top of each drop 
becomes more pronounced, and eventually, it yields a fish-tail pattern. Our results 
indicate that the value L/a  = 2.2 is very close to the minimum separation 
corresponding to nearly touching drops and thus it represents the limit of maximum 
packing. 

In figure 3(a-d) we present profiles of steadily settling drops for ac /a  = 4, 
r = 0.10, and L / a  = 6.0,4.5,3.2,3.0. The drops shown in figure 3(a, b) for L / a  = 6, 
4.5 are slightly prolate with a conical upper end. There is an interesting inversion in 
shape as L / a  is decreased from 4.5 to 3.2 ; the drops remain slightly prolate but with 
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FIGURE 2. Steadily settling drops for inverse Bond number r = 0.10, tube radius u,/a = 2.0 
and separation (a) L/a = 6.0, (a) 3.0, (c) 2.2. 

a conical bottom end. When L/a  is decreased below 3.2, the drops develop a dimple 
at the upper surface as illustrated in figure 3 ( d ) .  This indicates that pronounced 
dimpling of the top of a drop is characteristic of all closely packed drops 
independently of the radius of the tube. 

In figure 4 ( a x )  we present profiles of steadily moving drops for a larger tube radius 
uc/a = 8, r = 0.10, and L/a  = 6,4,3.  Note that to save space, we have not drawn the 
wall of the tube. The shape shown in figure 4 ( a )  is similar to that shown in figure 3 (a ) ,  
and this indicates that for L / a  = 6, the effect the tube becomes weak when a,/a is 
increased beyond 4. Comparing figure 4 ( b )  to figure 3(b) we see an interesting 
variation. For u,/a = 8, as L/a  is decreased the dimple at  the top of a drop is 
unstable: ambient fluid enters the drop along the axis of the tube, and the drop 
obtains a composite prolate shape. After a certain amount of ambient fluid has 
entered the drop the dimple closes, and the drop reaches a nearly steady state. This 
behaviour is similar to that of oblate drops settling in an infinite ambient fluid 
(Pozrikidis 1990). Examining figure 4 ( c )  we see that as L/a is reduced to small values, 
the dimple at  the top of the drops is stabilized, and entrainment of ambient fluid is 
suppressed. This behaviour may be understood by noting that, owing to the dense 
packing, entrainment would require substantial deformation of the bottom of each 
drop, but this is prevented by surface tension. 

We proceed next to illustrate the effect of drop separation on the terminal velocity 
of the settling array, U. Thus, in figure 5 we plot the reduced terminal velocity 
U* = V/U,, versus a/L for r = 0.10, where U,, is the terminal velocity of a 
spherical drop settling in an infinite ambient fluid given by Hadamard and 
Rybzinsky ; under our non-dimensionalization, U,, = 4/15. Note that the curves in 
figure 5 end at  a value of a /L  less than 0.50 which would correspond to touching 
spherical drops. Figure 5 indicates that for constant a,/a, increasing a / L ,  that is 
decreasing the separation between the drops, causes the drops to move faster, and 
this feature becomes more pronounced at high values of aJa. At sufficiently small 
values of Lla and large values of a,/a, the terminal velocity of the drops may well 
exceed that of solitary drops moving in an infinite ambient fluid. 

P I  FLM 237 
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0 

Steadily settling drops for r = 0.10 

r? 
r,Ja = 4.0 and separation (a )  fa = 0, - -  

( b )  4.5, (c) 3.2, (i) 3.0. 

The results presented in figure 5 indicate that in the range 0 < a/L c a/u,, U* is 
a weak function of a/L which, in turn, implies that the tube introduces a cutoff 
length, shielding one individual drop from the action of distant drops, i.e. drops that 
are located more than roughly one tube radius away. This is not surprising, for 
inspection of the Green’s function discussed in $ 3  reveals that the flow produced by 
a drop decays at an exponential rate up and down the tube. Based on this 
observation, we deduce that the number of active drops, N ,  that is the number of 
drops that affect the motion of another drop in the array, is proportional to aJL. 
Recalling that in the absence of the tube the velocity field produced by one drop 
decays like l l r ,  we find that the magnitude of the velocity at the location of one drop 
due to the all other drops is proportional to log ( N ) .  This suggests that at sufficiently 
high values of aJL ,  U* is a linear function of log (a,/L). When a,/a = 00, U* is 
unbounded for any finite value of a / L ,  and this indicates that in the limit u,/a+ 00, 
the family of curves shown in figure 5 tends to a vertical line that passes through the 
point a/L = 0, U* = 1. 

In figure 5 we have also plotted results for perfectly spherical drops or f = 00, 
constructed from the data presented by Hyman & Skalak (1972). In the limit of 
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- 0.10 

- 
co uc / a  = 2 

(4 (b) 

RGURE 4. Steadily settling drops for r = 0.10, u,/a = 8.0 and separation (a )  L / a  = 6.0, 
( b )  L/a  = 4.0, (c) L / a  = 3.0. 

U* 

0 0.1 0.2 0.3 0.4 0.5 

alL 
FIGURE 5. The effect of drop separation on the reduced terminal velocity of settling drops, 
U* = U/U,,  where U,, is the Hadamard and Rybzinsky terminal velocity of a single drop that 
moves in an infinite ambient fluid. The curves labelled r=  co correspond to perfectly spherical 
drops and were constructed from the results of Hyman & Skalek (1972). 

infinite separation, a/L  = 0, the terminal velocity of the deformed drops is 
remarkably close to that of perfectly spherical drops, and the difference remains 
small at finite values of a/L. In all cases, deformed drops move faster than spherical 
drops. 

21-2 
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FIQURE 6. The effect of tube radius on the drop shape for drop separatior L/a = 3. Steadily 
settling drops for r = 0.10, and (a) uc/a = 16, (b )  8, (c) 4, ( d )  2, ( e )  1.  

FIQURE I. The effect of tube radius on the drop shape for drop separation L/a = 6. Steadily 
settling drops for r = 0.10, and (a) u,/a = 32, ( b )  8, (c) 4, ( d )  2. 

Examining the motion from a different perspective, we consider now the effect of 
the tube radius, a J a ,  maintaining L / a  and r constant. In figure 6(a-e) we present 
steady drop profiles for L / a  = 3, r = 0.10, and a,/a = 16,8 ,4 ,2 ,1 .  The shape shown 
in figure 6(a) remains unchanged as uc/a is increased beyond the value of 16. The 
main message delivered by figure 6 (a-e) is that decreasing the radius of the tube has 
a stabilizing effect on the shape of the drops. When ac/a = 1, the drops are forced to 
squeeze against each other, attaining a convoluted shape. It should be noted that the 
profile shown in figure 6(e) is nearly but not entirely steady, but the slow evolution 
beyond the stage shown in this figure could not be described with sufficient accuracy 
with our numerical procedure. 

In figure 7(a-c) we present drop profiles for a,/a = 32, 8, 4, 2 and L / a  = 6, 
r = 0.10. It is interesting to note that increasing a,/a above 2 causes the top of a 
drop to change its shape from slightly dimpled, t o  prolate with a conical upper end, 
to flat, and eventually, to slightly dimpled. 
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In (u,la) 
FIGURE 8. The effect of tube radius on the reduced settling velocity U*. The curve labelled r = 00 

corresponds to perfectly spherical drops and was constructed from the results of Hyman & Skalak 
(1972) and Coutanceau & Thizon (1981). 

To illustrate the effect of u,/a on the terminal drop velocity, in figure 8, we plot 
U* for the drops shown in figure 7 versus log(a,/L) on a semilogarithmic scale. We 
observe nearly linear behaviour, which is in agreement with our previous arguments 
regarding the relation between U* and a,/a. In the same plot we show the reduced 
terminal velocity of perfectly spherical solitary drops, r = 00, constructed using the 
data of Hyman & Skalak (1972) and Coutanceau & Thizon (1981). Note that when 
uc/L is less than L/a,  the velocity of the periodic drops is remarkably close to that 
of solitary spherical drops (within one percent), indicating that the effects of drop 
deformation and interaction are negligible. As a,/L is increased beyond Lla,  the 
velocity of the periodic drops tends to become unbounded, whereas that of the 
solitary drops tends to UHE. 

So far we have examined the effect of the geometrical ratios u,/L and Lla ,  
maintaining the inverse Bond number, r, constant. Next we examine the effect of r, 
and a t  the same time illustrate the nature of transient drop evolution. In figure 
9 (a-c) we present three sequences of evolving drops for L/a = 2x, a,/a = 2.50, 1.50, 
1.10, and r = 0. In all three cases, at  the initial instant, the drops have a spherical 
shape. During the early stages of motion, all drops flatten at the top forming an 
axisymmetric dimple. Ambient fluid is entrained through the dimple into the drop 
along the axis, amplifying the dimple. The subsequent evolution depends strongly 
upon the radius of the tube. 

The evolution of the drop for a,/a = 2.50 shown in figure 9(a), is qualitatively 
similar to that of an oblate drop settling in an infinite ambient fluid (Kojima et al. 
1984; Pozrikidis 1990). This entails convection of the entrained ambient fluid up to 
the bottom of the drop, reduction of the drop into a translating drop ring, and 
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FIGURE 9. Evolving drops profiles of initially spherical drops for vanishing surface tension, r = 0; 
(a)  a,/a = 2.5, time increases in intervals of 5 from 0 to 45; ( b )  a,/a = 1.5, t = 0, 20, 40, 60.5, 80, 
90.5; for clarity, the laat frame has been shifted down by 3 units; (c) a,/a = 1.10, t = 0, 10, 20, 30, 
40, 50, 60, 70, 80, 90, 100.5, 114.5. 

ejection of an axisymmetric filament from the top of the drop. The evolution of the 
drop for a,/a = 1.50, shown in figure 9(b) follows a pattern similar to that for 
a,/a = 2.50, with the most notable variation the prolate shape of the main body of the 
drop. The evolution of the drop for a,/a = 1.10, shown in figure 9(c),  shows a novel 
and intriguing feature : at large times, the ejected tail develops a fish-like shape. This 
behaviour may be understood by observing that as the drop is settling, ambient fluid 
is convected upwards through the narrow annular gap that develops between the 
drop and the tube. This fluid pushes the tail of the drop toward the centre of the tube, 
causing it to close upon itself at large times. 

Figure 9 suggests that in the absence of surface tension, settling drops transform 
into translating prolate rings that undergo some degree of filamentation. To 
illustrate the effect of surface tension, in figure 10 (a+) we present three patterns of 
evolution corresponding to those shown in figure 9(a-c), but with finite surface 
tension, r = 0.10. A marked change in behaviour is now apparent : filamentation is 
suppressed, and the drops acquire a steady prolate shape in a smooth manner. The 
aspect ratio of the asymptotic shape is affected drastically by the radius of the tube, 
and is equal to 1.07 for a,/a = 2.50, 1.38 for a,/a = 1.50, and 3.06 for a,/a = 1.10. 

To illustrate the nature of the flow inside and outside the drops, in figure 10(d) we 
present the streamline pattern at steady motion for a,/a = 1.10 in a frame of 
reference moving with the terminal velocity of the drop. The streamlines on either 
side of the boundary of the drop are nearly parallel to the contour of the drop 
confirming that, indeed, the drop has reached a steady state. There is a single 
toroidal viscous eddy occupying the whole volume of the drop, and no eddy in the 
exterior of the drop. These features are in general agreement with the experimental 
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FIGURE 10. The effect of tube radius on the evolution of initially spherical drops. Evolving drop 
profiles for r = 0.10; (a )  u,/a = 2.5, time increases in intervals of 5 from 0 to 45; ( b )  u,/a = 1.5, 
time increases in intervals of 10 from 0 to 70 ; ( c )  u,/a = 1 .lo, time increases in intervals of 10 from 
0 to 160. ( d )  Streamline pattern in a frame of reference moving with the drop for the profile 
corresponding to the latest time shown in (c ) .  

1 
X 

FIGURE 11. The effect of surface tension: (a) profiles of steadily moving drops for u,/a = 1.10, and 
r = 0.10,0.20,0.40, m, placed with common centre of gravity; (b) the corresponding distribution 
of capillary versus gravitational forces along the boundary of the drops for r = 0.10, 0.20, 0.40; 
linear behaviour (indicated by the straight lines) suggests that viscous forces are insignificant. 

observations of Goldsmith & Mason (1962). The fact that the flow becomes rectilinear 
a short distance above and below the drop suggests that the behaviour of one drop 
is virtually independent of the presence of the other drops in the settling array. 

It is intuitively evident that increasing the surface tension will cause the drops to 
obtain a more compact shape. To illustrate this feature, in figure 11 ( a )  we present 
four steady drop shapes for a,/a = O.lO,L/a = 27r, and r = 0.10,0.20,0.40, as well the 
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FIGURE 12. A sequence of evolving profiles of a spheroidal drop settling inside a tube of u,/a = 0.80, 
for vanishing surface tension r = 0 and Lla = 2n at t = 0, 40, 80, 120, 180, 270, 330 (a-g). 

asymptotic spherical shape corresponding to  r = co . The deviation from sphericity 
is moderate for r = 0.40, but pronounced a t  lower values of r. The reduced settling 
velocity is a strong function of r, and decreases from U* = 0.0170 for r = 0.10, to 
U* = 0.0115 for r = 0.20, to U* = 0.00450 for r = 0.40. 

To gain insight into the nature of the flow around the drops shown in figure 11 (a) ,  
we consider the relative strength of the three forces governing the motion of the fluid : 
viscous forces, gravitational forces, and surface tension. To assess the relative 
magnitude of these forces, in figure 11 ( b )  we plot the capillary force, -2rk, versus 
the gravitational surface force x around the contour of the drop for the three cases 
r = 0.10, 0.20, 0.40. A slope of - 1 indicates that  surface tension and gravitational 
forces balance and viscous forces are insignificant. We thus see that viscous forces are 
negligible a t  the top and at  the bottom of the drop for the two cases r = 0.20,0.40, 
but make significant contributions in the intervening regions along the side of the 
drops. 

4.2. Elongated drops 

In  the second part of our investigation we consider the behaviour of elongated drops 
with a,/a < 1.0. Beginning our illustration, we present a sequence of evolving 
profiles of an initially spheroidal drop with aspect ratio 2.5, for u,/a = 0.80, 
L / a  = 2n, and r = 0 (figure 12 (a-g). We observe that during the early stages of 
motion, the bottom of each drop elongates while the top tends to become flat (figure 
12a-c). As time progresses, the top remains nearly immobile while the bottom 
assumes the shape of a nearly cylindrical finger (figure 12d,e). It is interesting to  
observe the onset of an interfacial front that propagates along the side of each drop 
and causes the gap between the side of the drop and the tube to increase 
progressively from bottom to top. At large times, the continuous elongation of the 
drops leads to collision and partial dispersion of the drop fluid into the ambient fluid 
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FIGURE 13. Profiles of steadily settling drops for a,/a = 0.80,&/a = 271, for (a) r= 0.025, (b )  0.05, 
(c) 0.10, ( d )  0.205. The panel (e) illustrates a schematic drawing presented by Goldsmith & Mason 
(1962, figure 2). 

(figure Sf,g). Summarizing the evolutioh, we may state that the initial array of 
spheroidal drops is unable to sustain its structure, but transforms into a cylindrical 
core which is settling along the axis of the tube. 

Next, we examine the effect of surface tension, maintaining all other parameters 
constant. Our computations show that the transient evolution of drops with finite 
surface tension is similar to that of compact drops. In figure 1 3 ( a d )  we present a 
family of steady drops shapes for u,/a = 0.80, L / a  = 12, and r = 0.025, 0.05, 0.10, 
0.20. All drops are composed of a nearly cylindrical body and two curved ends. The 
curvature of the top increases, whereas that of the bottom decreases as Tis increased. 
Clearly, increasing r reduces the length of the drops and, consequently, the size of 
the gap between the drops and the tube. The overall shape of the drops shown in 
figure 13 ( a d )  is similar to that shown in figure 13 ( e )  which was drawn by Goldsmith 
& Mason (1962) according to their laboratory observations. 

It has been noted by several previous authors that the terminal velocity of an 
elongated drop will depend primarily on the radius of the tube and the physical 
properties of the fluids, and will be insensitive to the length or volume of the drop. 
To derive an expression for the terminal velocity of a drop, Goldsmith & Mason 
(1962) noted that the flow over the main body of an elongated drop is virtually 
unidirectional. Requiring that the pressure does not change in the radial direction 
regardless of the magnitude of surface tension, they’derived a relationship between 
the reduced terminal velocity V = pU/Apga: and the reduced radius of the cylindrical 
body of the drop, /3 = umax/vc. Rearranging their equations (11)-(15) yields 

where p is the viscosity of the suspending fluid and Ap is the viscosity of the drop. 
Our numerical results corroborate the validity and accuracy of the theory of 
Goldsmith & Mason. Our computed velocity profiles across the main body of the 
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FIQURE 14. The reduced terminal velocity of an elongated drop V = ,uU/Apga,2 as a function of the 
tube Bond number B = Apgu,2/y. The curve labelled A = 1 shows the results of the present study; 
the curve labelled Asymptotic shows the results of Bretherton (1961) for tightly fitting inviscid 
drops, A = 0;  the curve labelled A = 0 shows the numerical results of Reinelt (1987) for inviscid 
fingers, A = 0; the discrete data points corresponding to  the measurements of Goldsmith & Mason 
(1962, figure 3) for A = 0. 

elongated drops were in excellent agreement with those predicted by the theory of 
Goldsmith & Mason, and the terminal velocity was predicted quite accurately, within 
a few percent, by equation (4.1). 

Now, it is evident that the value of /3 must be known before (4.1) can be used to 
compute V.  On the grounds of dimensional analysis, one may argue that ,d is a 
function of the viscosity ratio A and the tube Bond number B = ApgaX/y, implying 
that V is a function of h and B.  Unfortunately, there is no available theory relating 
/3 to h and B, except for the case h = 0 and in the limit of a narrow gap, /3+ 1 or 
S = /3- 1 + O ,  where 

(Bretherton 1961). Clearly, when B = 0.842, S = 0 and the gap closes, halting the 
motion of the fluid. Combining (4.1) and (4.2) yields a relationship between V and B,  

B = 0.842+1.10&+1.856+ ... (4.2) 

B = 0.842+ 1.25Ca)+2.24Ca$+ ..., (4.3) 

where Ca = VB = p U / y  is the capillary number. In our computations we seek to 
establish the precise dependence of V and /3 on B for h = 1. 

In figure 14 we present a plot of V versus B including our numerical results for 
h = 1,  the numerical results of Reinelt (1987) for h = 0, the data of Goldsmith & 
Mason (1962, figure 3) for A = 0, and the asymptotic results of Bretherton (1961) 
expressed by equation (4.3). Considering first the case h = 0, we see a good agreement 
between the numerical results and the experimental data ; the slight discrepancies 
might be attributed to experimental difficulties, including the presence of impurities, 
ambiguities in measuring surface tension, or finite size of the generated drops. The 
asymptotic theory of Bretherton (1961) is consistent with the numerical and 
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FIGURE 15. The reduced gap of an elongated drop, 8, as a function of the tube Bond number, B. 
The curve labelled A = 1 shows the results of the present study; the curve labelled Asymptotic 
shows the results of Bretherton (1961) for tightly fitting inviscid drops, h = 0; the curve labelled 
h = 0 shows the numerical results of Reinelt (1987). 

experimental results near the critical Bond number B,, = 0.842, but grossly 
overpredicts the terminal velocity at larger values of B. Inspecting next our results, 
we find that the velocity of drops with A = 1 is roughly half that of inviscid drops. 
As B is increased, V tends to an asymptotic limit corresponding to drops with 
vanishing surface tension. This behaviour is consistent with the experimental 
observations of Barr (1926) who noted that when B is larger than 10, V is virtually 
independent of B. The V-B curves for values of A between 0 and 1 are expected to 
lie between those for A = 0 and 1 shown in figure 14. 

Results for values of B near B,, were prohibited by two pragmatic constraints : the 
time step had to be reduced in order to maintain numerical stability, and the 
accurate computation of the Green’s function required an excessive computational 
time. One may argue, however, that equations (4.2) and (4.3) which were derived 
originally for inviscid drops, h = 0, apply also for viscous drops with small or 
moderate values of A. This becomes evident by noting that the theory of Bretherton 
is based on three assumptions: the bottom and top of the drops have a nearly 
hydrostatic shape; the flow within the gap between the drop and the tube is 
described by the equations of lubricating flow ; the shear stress on the surface of a 
drop is equal to zero. The first two assumptions are expected to be true in the case 
of viscous drops. To see that the third assumption is also valid, we note that the ratio 
of the interfacial shear stress on the side of the drop to that on the side of the 
suspending fluid is of order Ap, which is a small number provided that A is not 
excessively large. Certainly, the critical value B,, = 0.842 will be applicable for any 
value of A. 

We proceed next to consider the relationship between the reduced gap 8 and the 
Bond number B. In figure 15 we present our results for A = 1, those of Reinelt (1987) 
for A = 0, and the predictions of the asymptotic analysis of Bretherton (1961) for 
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FIGURE 16(a). Successive stages in the evolution of an initially spheroidal drop with aspect ratio 
2.25 and r = 1.0 or B = 0.640, at times t = 0, 3, 6, .. ., 21 : ( b )  instantaneous streamline pattern at 
t = 21. 

A = 0 expressed by equation (4.2). We observe that as the viscosity of the drop is 
increased from h = 0 to 1 the gap between the drop and the tube increases but only 
by a small amount. At values of B near B,, our results agree with those of Reinelt 
and Bretherton, and this corroborates our previous argument that when the gap is 
small, the viscosity of the drop plays a secondary role in determining the shape and 
behaviour of the drop. 

Bretherton (1961) found that a t  values of B below 0.842, steady translation is not 
possible, and the drops must move unsteadily, break up into smaller fragments, or 
adhere to the wall. The prevailing type of behaviour will depend upon the initial 
shape of the drop. For instance, it is conceivable that very slender drops will tend to 
contract, breaking up into a number of droplets. Experiments indicate that drops 
with a moderate aspect ratio will follow a different protocol of evolution (O’Brien 
1969) which is exemplified in figure 16(a) for an initially spheroidal drop with aspect 
ratio 2.25 and r = 1.0 or B = 0.640. We observe that the top and bottom of the drop 
tend to contract under the action of capillary forces, forcing the sides of the drop 
against the tube. Instead of settling, the drop tends to attain a hydrostatic 
configuration which is composed of a stationary upper and a lower meniscus and a 
cylindrical main body. The long-time behaviour of the drop may be visualized by 
inspecting the instantaneous streamline pattern depicted in figure 16 ( b ) .  Note that 
the absence of fore-and-aft symmetry is due to the effect of gravity. The eddies a t  the 
upper and lower menisci promote the contraction of the drop at  either end, and the 
drainage of suspending fluid through the narrow gap between the drop and the tube. 
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There are too small toroidal eddies near the mid-plane of the drop ; the eddy which 
is attached to the wall causes the side of drop to deform and break up into lenticular 
fragments. This process of breakup has been analysed by Goren (1964) in the context 
of linear stability analysis, by Hammond (1983) in the context of lubrication theory, 
and by Newhouse & Pozrikidis (1991) in the context of nonlinear stability analysis. 
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